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A long-standing question that arises when studying a particular auditory model is how to 
evaluate its performance. More precisely, it is of interest to evaluate to what extent 
the model representation can describe the actual human internal representation. Here, this 
question is addressed in the context of speech perception. That is, given a speech 
representation based on the auditory system, to what extent can it preserve phonetic 
information that is perceptually relevant? To answer this question, a diagnostic system has 
been developed that simulates the psychophysical procedure used in the standard 
Diagnostic-Rhyme Test (DRT). In the psyehophysieal procedure, the subject has all the 
cognitive information needed for the discrimination task, a priori. Hence, errors in 
discrimination are due mainly to inaccuracies in the auditory representation of the stimulus. 
In the simulation, the human observer is replaced by an array of recognizers, one for 
each pair of words in the DRT database. The recognizer used [Ghitza and Sondhi, J. Acoust. 
Soc. Am. Suppl. I 87, S107 ( 1990)] was designed to keep errors due to the recognition 
procedure to a minimum, so that the overall detected errors are due mainly to inaccuracies in 
the front-end representation. The system provides detailed diagnostics that show the 
error distributions among six phonetieally distinctive features. Results are given for the 
behavior of two speech analysis methods, a representation based on the auditory system and 
one based on the Fourier power spectrum, in quiet and in a noisy environment. These 
results are compared with psychophysical results for the same database. 

PACS numbers: 43.72.Ar, 43.71.An 

INTRODUCTION 

From a functional point of view, one can divide the 
auditory pathway into two parts, peripheral and central 
(Fig. 1). Using this partitioning, the input to the auditory 
periphery is the acoustic signal and its output is some "au- 
ditory representation" which, in turn, serves as the input to 
the central part. The processing principles of the central 
part are associated with cognition; i.e., higher-order sensa- 
tions, understanding, decision making. On the other hand, 
the preprocessing that takes place in the auditory periphery 
is based on acoustic properties, aiming to provide an ap- 
propriate internal representation that is free from nonrele- 
vant information. Morphologically, the boundary between 
the two parts may be drawn in the area of the primary 
auditory cortex. Hence, the periphery contains the outer, 
middle and inner ears as well as the neural centers com- 

posing the auditory brain stem and auditory midbrain. The 
cognitive element is the auditory cortex. 

Current research activity in auditory modeling is 
mostly devoted, according to the partition of Fig. 1, to the 
study of the auditory periphery. Usually, the purpose of an 
auditory model is to provide a representation which is per- 
ceptually relevant. A long-standing question that arises 
when studying a particular auditory model is how to eval- 
uate its performance. More precisely, it is of interest to 
measure to what extent the model representation can de- 
scribe the actual human internal representation. In this 
study, we address this question in the context of speech 

perception. That is, given a speech representation based on 
the auditory system, to what extent can it preserve pho- 
netic information that is perceptually relevant? 

In the past, auditory models were quantitatively eval- 
uated only in the context of speech recognition, serving as 
front-ends to automatic speech recognition systems (e.g., 
Ghitza, 1986). However, this kind of evaluation technique 
does not address the needs specified earlier. First, the mea- 
sured performance is of the overall system, front end (au- 
ditory model) and back end (recognizer) combined. There 
is no way of separating the errors caused by the front end 
from those caused by the back end and, therefore, there is 
no clear picture of how well the auditory model performs. 
And second, there is no attempt to relate the performance 
of the auditory model to the performance of a human. 
Therefore, the question of how well the model representa- 
tion predicts the internal human representation is not ad- 
dressed. 

In this study, we introduce a method that attempts to 
resolve these limitations. The proposed method comprises 
two parts. In the first part, data are collected on how ac- 
curate the human periphery is in representing phonetic 
distinctive features. To obtain these data a psyehophysical 
experiment was identified, capable of measuring inaccura- 
cies in the internal auditory representation of speech in 
isolation from the cognitive stages of speech perception. In 
the second part, the experimental procedure is simulated. 
The auditory periphery is represented by the auditory 
model under investigation, and the cognitive element by an 
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FIG. 1. The auditory pathway partitioning used in this study. According 
to this partitioning, the auditory pathway is divided into two parts, a 
peripheral part and a cognitive part. The input to the auditory periphery 
is the acoustic signal and its output is an "auditory representation" which, 
in turn, serves as the input to the cognitive part. 

automatic speech recognition system especially designed to 
keep errors due to the decision process to a minimum. 
Error patterns are created that show the distribution of 
errors among six phonetically distinctive features. The er- 
ror patterns of the simulated procedure are then compared 
with those of the human subjects, to provide a quantitative 
measure on how close the model representation is to the 
actual human representation. This comparison can also, in 
principle, provide diagnostic information on the ill- 
modeled parts of the auditory model. However, the study 
of the relationship between the diagnostic information and 
the parameters of the auditory model is beyond the scope 
of this paper. 

The psychophysical experiment that we selected is the 
one used in the standard Diagnostic Rhyme Test (DRT), 
suggested by Voiers (1983). In general, the DRT test at- 
tempts to evaluate how well phonetic information is per- 
ceived by a human listener. The test is divided into two 
parts, collecting the psychophysical data and deriving an 
intelligibility score. For our purposes, only the first part, 
i.e., the data collection, is relevant. We discuss it in Sec. I. 
We show that in the DRT psychological procedure, errors 
in discrimination are due mainly to inaccuracies in the 
auditory representation of the stimulus. This is so because 
the subject is provided, a priori, with all the cognitive in- 
formation needed for the discrimination task. 

In Sec. II, we describe the simulation of the DRT 
procedure. The cognitive process is replaced by an array of 
recognizers, one for each pair of words in the DRT data- 
base. The prototype recognizer is described in Appendix A. 
It was designed to keep errors due to the recognition pro- 
cedure to a minimum, so that the overall detected errors 
are due mainly to inaccuracies in the front-end represen- 
tation. 

The DRT simulation is not constrained to auditory 
models alone and can be used to evaluate any speech anal- 
ysis method. In Sec. III, we diagnose the behavior of two 
speech analysis methods, a representation based on the au- 
ditory system and the Fourier power spectrum, in quiet 
and in a noisy environment. The results are compared with 
psychophysical results for the same database. 

TABLE I. Stimulus words used in the DRT (borrowed from Voiers, 
1983). 

VOICING NASALITY SUSTENTION 

Voiced-Unvoiced Nasal-Oral Sustained-Interrupted 

veal-feel meat-beat vee-bee 

bean-peen need-deed sheet-cheat 
gin-chin mitt-bit viii-bill 
dint-tint nip-dip thick-tick 
zoo-Sue moot-boot foo-pooh 

dune-tune news-dues shoes-choose 

voal-foal moan-bone those-doze 

goat-coat note-dote though-dough 
zed-said mend-bend then•ten 

dense-tense neck•leck fence-pence 
vast-fast mad-bad than-Dan 

gaff-calf nab-dab shad-chad 
vault-fault moss-boss thong-tong 

daunt-taunt gnawstaw shaw-chaw 
jock-chock morn-bomb von-bon 
bond-pond knock-dock vox-box 

$IBILATION GRAVENESS COMPACTNESS 

Sibilated-Unsibilated Grave-Acute Compact-Diffuse 

zee-thee weed -reed yield-wield 
cheep-keep peak-teak key-tea 

jilt-gilt bid-did hit-fit 
sing-thing fin-thin gill-dill 

juice-goose moon-noon coop-poop 
chew-coo pool-tool you-rue 

Joe-go bowl•lole ghost-boast 
sole-thole fore-thor show-so 

jest-guest met-net keg-peg 
chair-care pen t-ten t yen-wren 
jab-dab bank-dank gat-bat 

sank-thank fad-thad shag-sag 
jaws-gauze fought-thought yawl-wall 
saw-thaw bong-dong caught-taught 
jot-got wad-rod hop-fop 

chop-cop pot-tot got-dot 

I. THE DIAGNOSTIC RHYME TEST (DRT) 

The specific Diagnostic Rhyme Test that we use was 
suggested by Voiers (1983) as a way of measuring the 
intelligibility of processed speech. The test is carefully con- 
trolled in both the contextual information presented to the 
listener and the psychophysical procedure. 

Voiers database consists of 96 pairs of confusable 
words spoken in isolation by several male and female 
speakers. Each word is of the CVC type, and words in a 
pair differ only in their initial consonant. The words are 
equally distributed among six phonetic distinctive features, 
16 word pairs per feature. The feature classification on 
which Voiers DRT test is based follows the binary system 
suggested by Jakobson et al. (1952). Table I (borrowed 
from Voiers, 1983) lists the distinctive features and their 
binary dimensions. It also shows the list of words in the 
DRT test. Selecting the features' (binary) values charac- 
terizes the mode of the speech production mechanism for 
producing the initial consonant in a given CVC word. The 
voicing feature characterizes the nature of the source, being 
periodic or nonperiodic. The nasality feature indicates the 
existence of a supplementary resonator. Sustention corre- 
sponds to the continuant-interrupted contrast of Jakobson 
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TABLE II. Consonant taxonomy used in construction of the DRT (borrowed from Voiers, 1983). Key: + =present, --=absent, o=does not apply. 

Features m n v • z 3 • b d g w r I j f 0 s f • p t k h] 
Voicing + + + + + + + + + + + + + + _ 
Nasality + + -- - _ 
Sustention + + + + .... + + + + + + + + _ _ + 
Sibilation + + + - - - + + + _ _ 
Graveness + _ + _ _ o o + _ o + _ o o + _ _ o o + _ o o 
Compactness -- + + + -- _ o + _ + + _ _ + + 

et aL, and sibilation corresponds to their strident-mellow 
contrast. Finally, graveness and compactness represent 
broad resonant features of the speech sound, related to 
Miller and Nicely's place of articulation (Miller and 
Nicely, 1955). Table II (also borrowed from Voiers, 1983) 
shows the feature makeup of various consonants. In com- 
piling the DRT word list, various criteria were observed in 
order to achieve balanced representation of each feature 
(Voiers, 1983). It should be noted, however, that some of 
the choices are controversial (Syrdal, 1987). In this study, 
we used Voiers's original DRT word list. 

The psychophysical procedure in the DRT is also very 
carefully controlled. The listeners are well trained and are 
very familiar with the database, including the voice quality 
of the individual speakers. The experiment is a two- 
alternative, forced choice (2AFC) experiment. First, the 
subject is presented visually with a pair of rhymed words. 
Then, one word of the pair (selected in random) is pre- 
sented aurally and the subject is required to indicate which 
of the two words was played. This procedure is repeated 
until all the words in the database have been presented. 
The errors can be displayed either in terms of a semi con- 
fusion matrix, or as a distribution among the six phonetic 
distinctive features. 

The controlled nature of both the database and the test 

procedure is the basis for our assumption that all cognitive 
information needed for the discrimination task is available 

to the listener prior to the aural presentation. If this as- 
sumption is correct, an error in identifying the word is due 
mainly to inaccuracy in the internal auditory representa- 
tion of the stimulus. Hence, the error list provided by the 
test can be used for reference purposes, reflecting errors in 
the internal human auditory representation during the 
DRT discrimination task. 

II. SIMULATING THE DRT 

In the simulation, the peripheral part of the auditory 
pathway is modeled by the auditory model under investi- 
gation, and the cognitive process is replaced by an array of 
recognizers, one for each pair of words in the DRT data- 
base. The errors due to the recognition procedure should 
be kept to a minimum, so that the overall detected errors 
are due mainly to inaccuracies in the front-end represen- 
tation. 

A recognizer in the array represents one DRT word 
pair. For a test word (out of a given word pair), the rec- 
ognizer makes a maximum-likelihood decision between 
two hidden Markov (HMM) word models, one for each 

word in the pair. An HMM word model is defined as a 
left-to-right phonetic sequence. Each state of the HMM 
word model represents one phonetic unit. The recognizer 
used is an HMM recognizer with time-varying states, sug- 
gested by Ghitza and Sondhi (1990,1993) and described in 
Appendix A. In this recognizer, state of the HMM repre- 
sents one phonetic unit in terms of a time-varying mean 
sequence of ordered frames, a template, and a block cova- 
riance matrix that characterizes the intraframe statistical 

dependence within the phonetic unit. The particular pho- 
netic unit that was selected is a diphone. In this way, the 
dynamic nature of coarticulation between two successive 
phonemes is represented more accurately, and the ability 
to discriminate between the initial consonants of the DRT 

words is improved. 
The simulation procedure is described in Fig. 2. To 

further increase the accuracy of the recognition procedure, 

Vocabulary o! states (diphones) • 

e.• H•;•er )output 
• m-u-nornu n 

speech 

peak -- 

teak 

moon -- 

noon -- 

FIO. 2. An illustration of the DRT simulation procedure. To test the 
word pair "peak/teak," for example, the state models for the diphones pi, 
ti, and ik are drawn from the states vocabulary, along with the appropri- 
ate transition matrix that allows only the necessary transitions. The ree- 
ognizer is then presented with the word "peak," and produces a phonemic 
transcription which is either p-i-k or t-i-k. If the first transcription occurs, 
the result of the simulated discrimination task is considered to be correct. 
Otherwise, an error is registered. Next, the word "teak" is tested. Iden- 
tical state models and transition rules are used, and the same sequence of 
steps is repeated. This concludes the test for this word pair. To test the 
next word pair (e.g., "moon/noon") the recognizer is loaded with new 
state models (mu, nu, and un) and a new transition matrix, and the above 
procedure is repeated. 
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the simulation is done on a speaker-dependent basis. Every 
speaker in Voiers database provides two repetitions of the 
DRT word list, one for training and one for testing. As a 
part of the training phase, a vocabulary of diphones is 
obtained for each speaker by segmenting the training rep- 
etitions by hand. The vocabulary covers all the diphones 
that appear in the DRT word list. If several tokens of a 
particular diphone appear in the DRT word list, the di- 
phone is represented by only one of these tokens. This is in 
view of our assumption that the cognitive representation of 
a phonetic unit is universal and not context dependent. 

For a given model to be evaluated, the diphones in the 
vocabulary are transformed to the appropriate representa- 
tion domain, resulting in an inventory of state models. The 
words in the test repetition are also processed and repre- 
sented in the same domain. 

The testing phase is a simulation of the 2AFC para- 
digm. For testing a particular word pair, the recognizer is 
first loaded with the appropriate state models (drawn from 
the inventory } and transition matrices. This step simulates 
the visual presentation of the word pair to the listener. 
Then, the two words are presented one at a time to the 
recognizer, analogously to the aural presentation to the 
listener. Based on the recognizeifs phonemic transcription, 
it is decided whether or not the word was correctly recog- 
nized. This procedure is repeated until all the word pairs in 
the database have been scanned. The overall error list can 

then be displayed in form of a semi-confusion matrix or as 
a distribution among the six distinctive features. 

Figure 2 illustrates the simulation procedure. To test 
the word pair "peak/teak," for example, the state models 
for the diphones pi, ti, and ik are drawn from the state 
vocabulary, along with the appropriate transition matrix 
that allows only the necessary transitions. The recognizer 
is then presented with the word "peak," and produces a 
phonemic transcription which is either p-i-k or t-i-k. If the 
first transcription occurs, the result of the simulated dis- 
crimination task is considered to be correct. Otherwise, an 

error is registered. Next, the word "teak" is tested. Iden- 
tical state models and transition rules are used, and the 

same sequence of steps is repeated. This concludes the test 
for this word pair. To test the next word pair ("moon/ 
noon," in Fig. 2), the recognizer is loaded with new state 
models, (mu, nu, and un) and a new transition matrix, and 

the above procedure is repeated. Note that in testing the 
word pair "peen/bean," the state model for the diphone pi 
(which is required to model the word "peen") is the same 
state model used previously for the word "peak." 

As we mentioned before, the simulation is performed 
on a speaker-dependent basis to keep errors due to the 
recognition process to a minimum. The single-speaker test 
procedure (training and testing) is repeated for every 
speaker in the database. The overall data are then ana- 
lyzed, to find similarities in the error patterns across speak- 
ers, signal conditions, and phonetic features. 

III. EXPERIMENTAL RESULTS 

A. Signal conditions 

In this study, we used three male speakers, two from 
Voiers database (speakers RH and CH). Each speaker 
provided two repetitions of the DRT word list, one tbr 
training and one for testing. The signals were lowpass fil- 
tered to 3600 Hz and sampled at an 8-kHz rate. Three 
"noisy" versions of the testing repetitions were created by 
adding white noise to the original ("clean") signals. The 
signal-to-noise ratio (SNR) levels were 30, 20, and 10 dB. 
The SNR was defined using global measurements. First, 
the total energy, Eto t, of the original (noise-free) word was 
computed. Then, the average energy per digital sample, 
Esamp, was determined, by dividing Eto t by the number of 
sample points in the signal. Here, E•mp was used to set the 
variance of a white noise generator to a level dependent on 
the desired global-SNR. This definition of global-SNR 
overestimates the actual signal to noise ratio during the 
consonantal segments since the magnitude of the noise is 
largely dependent on the amplitude of the vocalic portion 
of each word. 

The noisy versions were sent to Dynastat Inc. (a com- 
pany established by Voiers) for the psychophysieal evalu- 
ation. To comply with Dynastat's procedure, the processed 
words were recorded at a rate of a word every 1.3 s. For 
the recording tape to sound continuous over time, we first 
set the variance of the white noise generator to a level that 
remained unchanged until all the words in the DRT word 
list had been recorded in sequence. To record a particular 
word, the signal was amplified (or attenuated) by a gain 
factor that was calculated in advance, to maintain the de- 

sired global SNR. 
In the simulation, the vocabulary of diphones was cre- 

ated from the clean repetition of the DRT word list as- 
signed for training. For testing, the same noisy versions 
that were sent to Dynastat Inc. were used. 

B. Description of the analysis methods 

We tested two speech representation methods, the En- 
semble Interval Histogram (EIH) and the traditional Fou- 
rier power spectrum. The first representation is based on 
the auditory model suggested by Ghitza (1992). Both the 
EIH and the Fourier power spectrum contain information 
about the spectral envelope as well as about the spectral 
fine structure. The tests to be described here were per- 
formed by utilizing only spectral envelope variations. The 
spectral envelope variations were represented by a P-order 
truncated cepstral series. Since we are not considering the 
effect of signal intensity we set c o to 0. 

The auditory model for the EIH representation is de- 
scribed in Appendix B. The model uses 165 filters (approx- 
imating the filters in a cat's cochlea), and five thresholds 
per filter. The EIH is computed once every 10 ms. The 
interval statistics at time to are collected from all 825 
(165X5) threshold detectors, using all simulated firing 
records which exist in the windows that end at time t o (see 
Fig. B3). The length of each window is 20/CF, where CF 
is the center frequency of the cochlear channel. Since the 
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levels are equally distributed on a logarithmic scale, the 
EIH is treated as a log "spectrum." Hence, a "cepstral" 
representation of the EIH can be obtained by computing 
the inverse DFT of the EIH. For the EIH, an appropriate 
envelope fit is achieved by truncating the cepstral series at 
c25. This order of fit was required because of the larger 
dynamic range of the EIH (compared to that of the Fou- 
rier power spectrum). The first "cepstral" coefficient (co), 
which can be used as an estimate of the loudness at time to, 
was set to 0. 

For the Fourier power spectrum, an 1 lth-order ceps- 
tral representation was computed every 10 ms. At time to, 
the cepstral coefficients are derived from the tenth-order 
LPC coefficients, computed from a 30-ms-long Hamming 
window centered at t 0. The first cepstral coefficient (%) 
was set to 0 and only the next ten coefficients were used. In 
this way, the envelope is normalized in the sense that the 
average value of the LPC log spectrum is 0. 

C. Results 

The raw data that summarize the outcome of one ex- 

perimental run are organized in the form of a matrix with 
12 rows and 16 columns. The rows stand for the phonetic 
features (six dimensions times two values per dimension-- 
attribute present and attribute absent) and the columns 
represent the words in the DRT word list associated with 
the corresponding row. For the simulated procedure, an 
entry in the matrix is a binary number, a 0 (for a correct 
answer) or 1 (for an error). For the psychophysical pro- 
cedure, the value of a matrix element indicates the number 
of listeners who made a mistake in identifying the corre- 
sponding word. A matrix element can be any integer be- 
tween 0 and 8, where 8 is the number of listeners partici- 
pating in the test. In order to have raw-data matrices of the 
same nature for both the psychophysical and the simulated 
procedures, we transformed the psychophysical results into 
a binary form. A threshold of 3 was arbitrarily specified 
and any matrix element less than the threshold value was 
set to 0. Otherwise, it was set to 1. This is to say that in the 
psychophysical procedure, an error is deemed to have oc- 
curred only if more than two listeners made the error. 

Let us define three main variables, the analyzer, the 
speaker and the SNR. In our case, we have three analyzers 
(Human, EIH, Fourier power spectrum), three speakers 
and three levels of signal-to-noise ratio. An experiment was 
run for every combination of those variables, yielding 27 
raw-data matrices. 

In analyzing the data, we first compute (for every ma- 
trix) the average error per row (feature) which equals the 
number of l's in a row divided by 16. The outcome of every 
experimental condition is now reduced to a 12-dimensional 
error vector, representing the average error, over words, 
for each of the 12 phonetic attributes for this condition. We 
now average these error vectors across speakers to create 
an average error vector for every combination of analyzer 
and SNR. 

Figures 3-8 show the resulting error patterns, dis- 
played in six different ways. Every figure contains four 
plots, where the left-upper plot is a summary of the other 
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FIG. 3. Distribution of errors made by the human listener in three values 
of signal-to-noise ratio, processed from the responses of eight listeners. 
The left-upper plot is a summary of the other three plots, excluding the 
standard-error bars. The abscissa of every plot indicates the six phonetic 
features: "vc" is for voicing, "ns" for nasality, "st" for sustention, "sb" 
for sibilation, "gv" for graveness and "cm" for compactness. The "+" 
sign stands for attribute present and the "--" sign for attribute absent. 
The line connecting the measurements is only for display purposes, to 
enable the reader to distinguish between error patterns that belong to a 
particular parameter value. The noise is additive and white, and the 
signal-to-noise ratio is defined using global measurements (see text). 

three plots, excluding the standard-error bars. Note that 
the line connecting the measurements is only for display 
purposes, to enable the reader to distinguish between error 
patterns that belong to a particular parameter value. 

In Figs. 3-5, the error distributions are displayed sep- 
arately for every analyzer, with the SNR as a parameter. 
We see that although the volume of the errors increases 

FOURIER POWER SPECTRUM 

lOO o 30dB -- 
80 • • 20dB --- 

' !'"' o 10dB .... 
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vc ns st sb gv cm 

: 10dB 

+ - + - + - + - + - + + + - + - + - + - + 

vc ns st sb gv cm vc ns st sb gv cm 

FIG. 4. As in Fig. 3, for the Fourier power spectrum. Only spectral 
envelope variations (represented by the 1 lth-order truncated cepstral se- 
ties) are utilized. 
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FIG. 5. As in Fig. 3, for the EIH. Only EIH envelope variations (repre- 
sented by the 25th-order truncated "cepstral" series) are utilized. 

with the increase of noise level, the error patterns for every 
analyzer remain similar. The number of errors made by the 
human is much lower than the number of errors made by 
the machine, for both analyzers. 

In Figs. 6-8, the error distributions are displayed sep- 
arately for every $NR condition, with the analyzer as a 
parameter. Every analyzer exhibits a characteristic error 
distribution. The error distributions are substantially dif- 
ferent from each other. Moreover, as expected from Figs. 
3-5, the differences between the error patterns are consis- 
tent across all noise levels that were examined. Three 

points are noteworthy. First, the human observer performs 
much better than the EIH and Fourier power spectrum, 
and is very robust to noise. Second, the errors made by the 
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FIG. 6. Comparing error distributions of the human listener, the Fourier 
power spectrum and the EIH, in a 30-dB signal-to-noise ratio. Figure 
legend is as in Fig. 3. 

FIG. 7. As in Fig. 6, for SNR of 20 dB. 

Fourier power spectrum analyzer are mainly in the pres- 
ence of voicing, nasality, sustention, and sibilation. And 
third, EIH is more robust to noise than the Fourier power 
spectrum, in agreement with previous reports (e.g., 
Ghitza, 1992). 

It is possible to argue that the comparison of error 
distributions due to the EIH and the Fourier power spec- 
trum might be biased because the recognizer may be 
matched better to one analyzer than the other. We tried to 
eliminate this kind of bias and to ensure that errors are due 

to the properties of the analyzer. In the training procedure, 
the origin of a particular state (diphone) was the same 
across all representation methods, and the segmentation by 
hand was done in the time domain; The same initial, mid- 
dle, and final time instants for a given phoneme were used 
by both front-ends. The structure of the recognizer, as well 
as the transition matrix, were also fixed, irrespective of the 
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FIG. 8. As in Fig. 6, for SNR of 10 dB. 
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representation method. Therefore, the error differences are 
indeed due to the characteristics of the analyzers. 

IV. DISCUSSION 

In previous sections, we outlined a method for evalu- 
ating how adequate an auditory model is in predicting the 
internal human representation of speech sounds. In this 
section, we shall discuss arguments that were considered in 
designing the main two components of the system, the psy- 
chophysical procedure and the simulation system. 

A. Selecting the psychophysical procedure 

To evaluate the performance of the auditory model, 
psychophysical data are needed on the accuracy of the 
human periphery in representing speech sounds. To obtain 
such data, an experimental procedure should be identified, 
capable of measuring human responses that are due only to 
inaccuracies in the periphery. The highly controlled 2AFC 
paradigm of the DRT addresses this concern. The listener, 
well trained and very familiar with the database, is pro- 
vided with all the information required for the discrimina- 
tion task a priori. He is first presented, visually, with the 
word pair. Then, one of these words is presented aurally 
and he has to indicate which of the words appearing in the 
visual display was played. Our assumption is that if, under 
those conditions, an error still occurs, it is due mainly to 
inaccuracy in the internal representation of the stimulus. If 
our assumption is correct, this psychophysical procedure 
has the property of measuring errors originated in the 
periphery--separated from errors made during the cogni- 
tive process. 

To further demonstrate the suitability of the 2AFC 
paradigm to our needs, let us examine an alternative psy- 
chophysical procedure used by Miller and Nicely (1955) 
to measure perceptual confusions among the 16 English 
consonants. CV stimuli were used, with the consonants 
followed by the vowel [a] (as in father). The subject was 
first presented aurally with the stimulus and then was re- 
quired to indicate which of the 16 consonants was played. 
Clearly, in this case, errors made by the subject are due to 
inaccuracies in the cognitive process as well. 

B. Designing the simulation system 

Using a 2AFC paradigm turns out to also be necessary 
for a suitable design of the simulation system. The system 
should detect errors due to the auditory model under in- 
vestigation, as distinct from errors generated by the back 
end of the system. Ideally, one would like to have an error- 
free back end. In reality, however, the number of errors 
due to the back end cannot be reduced to zero even when 

simulating a 2AFC paradigm. Therefore, we took the ap- 
proach of reducing the number of errors due to the back 
end to a minimum. This was done by: (1) increasing the 
discrimination power of the recognizer. An HMM with 
time-varying states was introduced, where a state model is 
defined by a time-varying mean sequence of ordered 
frames, representing a diphone, and a block covariance 
matrix that characterizes the intraframe statistical depen- 

dence within the diphone. (2) Specifying a strict state tran- 
sition matrix such that only the necessary transitions de- 
fined by the tested word pair are allowed. Finally, (3) 
simulating the psychophysical procedure on a speaker- 
dependent basis, and averaging results across speakers. 

To illustrate how these design criteria reduce the num- 
ber of back-end errors, let us reexamine the example of 
testing the word pair "peak/teak," given in Sec. II. The 
recognizer consists of three states (corresponding to the 
diphones pi, ti, and ik) and a transition matrix that allows 
only two transitions (from pi to ik or from ti to ik) with 
equal probabilities. Hence, the recognizer is designed to 
make a maximum-likelihood decision between two HMM 

word models, "peak" and "teak." The word models are 
made by concatenating the best DTW versions of the state 
models pi and ik (for "peak") and ti and ik (for "teak"), 
to match the actual input word ("peak" or "teak"). Both 
word models utilize the same state model for the final, VC, 
part of the word pair (ik in our example). Hence, the error 
in representing this part of the actual input word by either 
word model is identical. Therefore, the maximum- 
likelihood decision between the two word models considers 

only the degree of accuracy by which the relevant CV part 
of the word is represented. 

For comparison let us examine the performance of two 
alternative designs for the back end, based upon two ap- 
proaches that are commonly used in the case of isolated 
word recognition. The two alternatives are the traditional 
HMM recognizer and the whole-word DTW recognizer. A 
system based upon the traditional HMM differs from our 
system (i.e., HMM with time-varying states) only in the 
way the state model is defined. A state model of a tradi- 
tional HMM can be viewed as a quantized version of a 
state model in the HMM with time-varying states, where 
the degree of quantization depends on the number of sub- 
states in the state model. Therefore, the performance of the 
HMM with time-varying states can be viewed as the upper 
bound for the performance of the traditional HMM. If the 
DTW approach is to be used, two whole-word template 
models should be created for the word pair under testing 
(in our example, one template model for "peak" and one 
template model for "teak"). Hence, the simulation system 
should be designed to make a minimum distance decision 
between the two whole-word models and the actual input 
word. This decision, however, will depend on errors that 
are accumulated over the entire optimal paths (in the 
DTW sense) that map the input word, CV and VC com- 
bined, to the template word model. This is in contrast to 
the decision rule used by the HMM with time-varying 
states, where the discrimination between the word models 

depends only upon the distance between the relevant CV 
part of the input word and the corresponding, time- 
varying, CV states. 

C. Correlates between phonetic features and 
perceptual dimensions 

As discussed in Sec. I, the word pairs in Voiers data- 
base were chosen to equally cover the six phonetic distinc- 
tive features suggested by Jakobson et al. (1952). Hence, 
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the human performance, as well as the performance of the 
auditory model under investigation, are measured in terms 
of the error distributions for each of these phonetic fea- 
tures. But, to better suit our purpose, it would be desirable 
to display the errors along explicit perceptual dimensions, 
instead. Finding perceptual correlates to Jakobson et al.'s 
features is beyond the scope of this paper. Nevertheless, 
indirect evidence exists for such a correlation. Using mul- 
tidimensional scaling techniques, Shepard (1972) and 
Wish and Carroll (1974), demonstrated that the place and 
manner features do relate to some specific perceptual di- 
mensions. In view of the relationship between these fea- 
tures and Jakobson et al.'s features, Voiers database might 
be implicitly specified over perceptual dimensions. One ad- 
ditional point is noteworthy. Shepard, as well as Wish and 
Carroll based their studies on Miller and Nicel•'s experi- 
mental data (1955) which reflects the overall auditory 
responses--peripheral and central combined. Hence, the 
perceptual dimensions they proposed are associated with 
the central parts of the auditory pathway as well. On the 
other hand, errors measured during the DRT experimental 
procedure occur at the peripheral level. We may conclude, 
therefore, that error patterns produced by the DRT proce- 
dure (e.g., Figs. 3-8) display inaccuracies in the human 
peripheral representation along relevant, cognitive dimen- 
sions. 

D. Training the simulation system 

In the current study, we considered the case of noisy 
speech signals (Figs. 3-8). Nevertheless, we trained the 
recognition system using the clean version of the training 
database. Since the training phase is associated with mim- 
icking the (error-free) human cognitive element, a ques- 
tion can be asked: Is training by using clean speech suitable 
for an appropriate mimic, or should the training be under 
noisy conditions similar to those of the testing database? 
To reduce the back-end errors to a minimum, it is pre- 
ferred to train the recognizer under noisy conditions (e.g., 
Juang, 1991, Fig. 1 ). Doing so, however, implies an under- 
lying assumption that the decision strategy of the human 
listener involves an adaptation process in which the "inter- 
nal states" that represent the basic speech units change 
with changes in the environmental conditions. Training in 
quiet, on the other hand, implies that the cognitive states of 
the basic speech units remain unchanged and that the au- 
ditory periphery is capable of producing representations 
that remain stable under variations in the signal condi- 
tions. 

E. Covering the perceptual space of speech 

Finally, it is important to note that the use of Voiers 
database (which contrasts only the initial consonant in a 
list of CVC word pairs) limits the range of acoustic ambi- 
guities tested. Complementary diagnostic information 
should be obtained from additional databases, for example 
a database that contrasts the final consonants in a list of 

CVC word pairs (Voiers, 1991 ), or middle consonants in a 
list of VCV word pairs (e.g., Schmidt-Nielsen, 1983). At 
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FIG. 9. Comparison of distribution errors made by the human listener, 
the EIH with the cat filters (EIH_½at), and the EIH with the Mppnl 
(EIFI_Mbpnl), in a 10-dB signal-to-noise ratio. 

this point, therefore, our study should only be regarded as 
a demonstration of the diagnostic capabilities offered by 
this approach. 

V. SUMMARY 

In this paper, we outlined a method for evaluating how 
adequate a speech analysis method is in predicting the ac- 
tual human representation of speech sounds. In addition to 
measuring the overall error rate, the method provides de- 
tailed diagnostics that show the error distributions among 
six phonetically distinctive features. 

To demonstrate the power of the suggested evaluation 
method, we considered the behavior of two speech analysis 
methods, a representation based on the auditory system 
(the EIH representation) and the Fourier power spectrum, 
in quiet and in a noisy environment. The results were com- 
pared with psychophysical results for the same database. 
The results show that the overall number of errors made by 
the machine (the EIH or the Fourier power spectrum) are 
far greater than the overall number of errors made by a 
human, at all noise levels that were tested. Further, the 
errors made by the human listener are distributed in a 
different way compared to the errors made by the ma- 
chines, and that the distributions of errors made by the two 
analyzers are also quite different from each other. 
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ADDENDUM 

Since this paper was submitted for publication the pro- 
posed method was used to evaluate other auditory models. 
Of a unique interest is an EIH model similar to the one 
discussed in Appendix B, but with different cochlear filters. 
Instead of the filters of Fig. B2 (derived from tuning curves 
of cats) we now use a phenomenological model of the hu- 
man cochlea suggested by Goldstein [J. Goldstein, Hear. 
Res. 49, 39-60 (1990)]. The model is termed Mbpnl, for 
"Multi bandpass nonlinear" processor. We use 190 Mbpnl 
channels distributed from 200 to 7000 Hz according to the 
frequency position suggested by Greenwood [D. Green- 
wood, J. Acoust. Soc. Am. 87, 2592-2605 (1990)]. The 
filters operate in the time domain and change their gain 
and bandwidth with changes in the input intensity, in ac- 
cordance with psychophysical behavior. 

Figure 9 shows a comparison of distribution of errors 
made by the human listener, the EIH with the cat filters 
(EIH_cat) and the EIH with the Mbpnl filters 
(EIH_Mbpnl), in a 10-rib signal-to-noise ratio. (See Fig. 
3 caption for abbreviation index.) EIH_cat and 
EIH Mbpnl demonstrate very similar performance in all 
dimensions except sb+ and cm+. Although the overall 
number of errors of the two EIHs is almost the same, the 
error distribution of EIH_Mbpnl is closer in shape to the 
error distribution of the human observer. Note, however, 
that the overall number of errors of both EIHs is still much 

higher than that of the human. 

APPENDIX A 

This Appendix introduces an extension to the tradi- 
tional application of hidden Markov models (HMMs) to 
speech recognition. The new concept was developed by M. 
Mohan Sondhi and the author (Ghitza and Sondhi, 
1990,1993) and was used in the DRT simulations, as de- 
scribed in Sec. II. 

1. Templates as states in a HMM with nonstationary 
states 

Consider a Markov chain with N states, 
Q-= [ql,q2,...,qN], and associated transition probability ma- 
trix A-----[aij, 1 •i,j•N]. If S k denotes the state of the Mar- 
kov chain at time instant k, then by definition aij 
=prob(Sk+l=qj[Sk=qi). A hidden Markov model 
(HMM) based on this Markov chain generates a random 
sequence of observation vectors o•,o2 ..... ok ..... whose statis- 
tical properties change as the state of the underlying Mar- 
kov chain changes. 

In almost all applications of HMMs to speech recog- 
nition, the probability distribution of the observation ok, 
generated at time instant k, is assumed to depend only on 
the state Ske Q, in which it is generated. Hence, the obser- 
vations generated in any given state are independent and 
identically distributed (i.i.d.). Thus, if the sequence of ob- 
servations O m [o,t+ • ..... or+s:] is generated in some state q 
(i.e., if St•St+l•"'--•St+K•q), then the assumption is 
that the probability of that sequence has the form 

t+K 

(1) 

The state-dependent probability distribution p(olq) can 
take a variety of forms. If the observations are 
d-dimensional vectors of continuously distributed compo- 
nents, the distribution is usually assumed to be a 
d-dimensional Gaussian distribution (or a mixture of such 
distributions). 

Some more general models have been considered in the 
literature (although not widely used). Thus Bahl et al. 
(1983) assumed that ok depends on S• as well as on Sk_l. 
Wellekens (1987) allowed o k to depend on S k, S&_•, and 
o k_ •, i.e., on the previous observation as well. 

Even with these generalizations, a sequence of obser- 
vations generated in a given state is a segment of a station- 
ary time-discrete random process. In certain situations 
(e.g., when the spoken word "eight" is represented by a 
five-state HMM), this assumption of stationarity is reason- 
able. If, however, the state is to represent a plosive, or a 
long segment of speech (tens of milliseconds) the assump- 
tion is clearly invalid. To the best of our knowledge, no one 
has considered HMMs in which the states are nonstation- 

ary, i.e., in which the probability of an observation se- 
quence depends explicitly on the time index, k. It is this 
extension that is the subject of the HMM with nonstation- 
ary states. 

Our motivation for studying such a model comes from 
the application of HMMs to speech recognition in terms of 
subword units. Such HMMs are of interest in large- 
vocabulary recognition, as well as in other applications 
where a decoding in terms of subword units is desirable. 
Specifically, consider the HMM "phonetic decoder" pre- 
sented by Levinson (1987), in which each state represents 
a (variable-duration) phone. With this choice of subword 
units, the model has about 50 states, each specified by a 
duration probability density, and a probability density for 
the observations. Successive observations in a state are as- 

sumed, as above, to be i.i.d. Let us consider the problem 
faced by this model in representing the spoken word "gob" 
whose spectrogram is shown in the left side of Fig. A1. 
Shown below the spectrogram is an approximate phonetic 
transcription. It is clear that if the phone [a], say, is rep- 
resented by a state in the HMM, that state must be non- 
stationary. (In fluent speech, such nonstationary states are 
the rule, and "steady" states the rare exception.) To rep- 
resent such a state by time-averaged statistical properties is 
a gross approximation. Another unsatisfactory feature is 
that because of the i.i.d. assumption, the probability as- 
signed to a set of observations is independent of the order 
in which the observations occur. Thus, for instance, revers- 

ing the direction of the formant transitions leaves the prob- 
ability unchanged. 

The way this nonstationarity has been dealt with in the 
past is by representing the transient state as a concatena- 
tion of two or more substates. Thus the nonstationary state 
is approximated by a sequence of piecewise stationary 
states. In principle, any transient state can be approxi- 
mated this way by a sufficiently fine subdivision. We pro- 
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FIG. A1. Spectrograms of the phoneme [a] inside the words "bob" and 
"gob." It is clear that if the phoneme is represented by a state in an 
HMM, that state must be nonstationary, to reflect the time variation in 
the formant locations. To represent such a state by time-averaged statis- 
tical properties is a gross approximation. 

pose an alternative point of view in which the entire sub- 
word unit is regarded as a single nonstationary state. 

A moment's reflection shows that a diphone is the 
smallest subword unit for which such an HMM with non- 

stationary states makes sense. This is because of coarticu- 
lation. The Spectral trajectory of, say, the vowel [a] is quite 
different in the CV syllable/bo/from that in the syllable 
/go/, as shown in Fig. A1. Clearly, it would defeat our 
purpose if we would consider all occurrences of [a], regard- 
less of context, to belong to the same ensemble. From the 
very outset, therefore, we consider states to represent di- 
phones. (It is, of course, possible to consider even more 
complicated subword units. However, we have not done 
that. ) 

The structure of our HMM is similar to that of the 

variable duration HMM described by Levinson (1987). 
The main difference is, of course, in the definition of a 
state, and in the manner in which a probability is assigned 
to a sequence generated in a given state. 

As mentioned before, we have chosen the states to be 
diphones. Assuming there are about 50 phonemes in En- 
glish, we expect the number of states, N, to be on the order 
of about 2000. 

The dwell time in a state of a conventional HMM is 

exponentially distributed. As this is not, in general, a good 
approximation to the duration distribution, we modify the 
HMM as in Levinson (1987). Thus the NXN state tran- 
sition matrix A is constrained to have its diagonal elements 
all=O, for all i, and the dwell time in a state is governed by 
a state-dependent probability distribution of durations. 

The definition of a state is in terms of a template (or 
typical sequence of observations) and a probability distri- 
bution of the deviations from the template. 

APPENDIX B 

This Appendix briefly describes the auditory model 
that was used in the experimental part of this study. A 
detailed description of the model can be found in Ghitza 
(1992). 
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FIG. B 1. The ensemble interval histogram (EIH) computational model. 
The cooblear component consists of 165 filters (channels), whose center 
frequencies are equally spaced on a log-frequency scale, between 150 and 
7000 Hz. The level-crossings are measured at positive threshold crossings. 
The positive-threshold levels are pseudorandomly distributed, on a log 
scale, over the dynamic range of the signal. The multidimensional point 
process derived from the five level-crossing detectors simulates the 
auditory-nerve firing patterns. The interval histogram is created by dis- 
tributing the inverse of the detected intervals across 128 bins equally 
spaced on a linear frequency scale, between 0 and 4000 Hz. Only the most 
recent intervals are used in the computation (an interval is defined as the 
time between two adjacent positive-going level crossings). The ensemble 
histogram is the sum of the corresponding histogram bins over all of the 
simulated fibers in the array. 

1. The ensemble interval histogram (EIH) model 

The model is schematically illustrated in Fig. BI. Its 
first stage represents the auditory periphery up through the 
level of the auditory nerve. The mechanical motion of the 
basilar membrane is sampled by 165 inner hair cell (IHC) 
channels, equally spaced along a log-frequency axis be- 
tween 150 and 7000 Hz. The corresponding cochlear filters 
have been simulated in detail, using actual neural tuning 
curves for cats collected by M. C. Liberman (unpub- 
lished). The amplitude responses of 28 filters (one every 
six) are shown in Fig. B2. Their phase characteristic is 
minimum phase and their relative gain, measured at their 
center frequencies, reflects the cat's middle ear transfer 
function. The ensemble of nerve fibers innervating a single 
IHC is simulated by an array of level-crossing detectors at 
the output of each cooblear filter (i.e., each level-crossing 
detector is equivalent to a fiber of specific threshold). A 
neural firing is simulated as the positive-going level cross- 
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FIG. B2. The amplitude response of 28 (one every six) simulated co- 
chlear filters, plotted in a logarithmic frequency/decibel scale. The filters' 
amplitude response is the actual neural tuning curves for cats collected by 
M. C. Liberman (unpublished data). Note the high degree of overlap 
among filters. 

ing. The detectors are pseudorandomly distributed across a 
range of positive levels. The values assigned to the level j 
of every filter is a random Gaussian variable, with a mean 
Lj and a standard-deviation ar=O.2Lj. The mean values 
L• ..... Lj,..,L 5 are uniformly distributed on a log scale over 
the amplitude range characteristic of speech sounds. The 
random nature of the values of the jth level across the 
cochlear filter array reflects the fact that the diameters and 
the synapse-connection size of the fibers that innervate the 
same side of different IHCs along the cochlear partition 
incorporate a certain amount of intrinsic variability (which 
is characteristic of most physiological systems). 

The output of the level-crossing detectors represent the 
discharge activity of an ensemble of auditory-nerve fibers. 
Figure B3 shows simulated auditory-nerve activity for the 
first 60 ms inside the vowel [a] in the word "gob." The 
abscissa represents time and the ordinate represents the 
characteristic frequency of the IHC channels. Note the 
logarithmic scale of the characteristic frequency, which 
represents the place-to-frequency mapping on the basilar 
membrane. In the figure, a level-crossing occurrence is 
marked as a single dot, and the output activity of each 
level-crossing detector is plotted as a separate trace. Each 
IHC channel contributes five parallel traces, with the lower 
trace representing the lower-threshold level-crossing detec- 
tor. If the magnitude of the filter's output signal is low, 
only one level will be crossed, as is the case for the very top 
channels of Fig. B3. However, for large signal magnitudes, 
several levels will be activated, creating a "darker" area of 
activity. 

The level-crossing patterns represent the auditory- 
nerve activity which serves, in turn, as the input to a sec- 
ond, more central stage of neural processing. It is assumed 
that: (1) neural circuits beyond the auditory nerve have a 
place-independent structure, and (2) these circuits operate 
on detailed timing information conveyed in the auditory- 

4800 

FIG. B3. Simulated auditory-nerve activity for the first 60 ms inside the 
vowel [a] in the word "gob." The abscissa represents time and the ordi- 
nate represents the characteristic frequency of the IHC channels. Note the 
logarithmic scale of the characteristic frequency, which represents the 
place-to-frequency mapping at the basilar membrane. In the figure, a 
level-crossing occurrence is marked as a single dot, and the output activity 
of each level-crossing detector is plotted as a separate trace. Each IHC 
channel contributes five parallel traces, with the lower trace representing 
the lower-threshold level-crossing detector. If the magnitude of the filter's 
output signal is low, only one level will be crossed, as is the case for the 
very top channels. However, for large signal magnitudes, several levels 
will be activated, creating a "darker" area of activity. The figure also 
illustrates how the length of the analysis window in each channel is re- 
lated to its center frequency (CF). The length of each window is 20 times 
I/CF, where CF is the center frequency of the cochlear channel. 

nerve fibers, irrespective of their tonotopic place of origin 
in the cochlear partition. Following these assumptions, a 
representation of the timing information is described as an 
ensemble interval histogram (EIH). Conceptually, the 
EIH is a measure of the spatial (tonotopic) extent of co- 
herent neural activity across the simulated auditory nerve. 
Mathematically, it is the short-term probability density 
function of the reciprocal of the intervals between succes- 
sive firings, measured over the entire simulated auditory 
nerve in a CF-dependent time-frequency zone (Fig. B3). 
The model belongs to the temporal-nonplace category. 
Note, however, that tonotopic information is present im- 
plicitly, since the information conveyed by each fiber is by 
itself place dependent due the tuning characteristics of the 
basilar membrane. 
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